International Symposium on the Verification of Autonomous Mobile Systems (VAMS)

Safety Assessment of Autonomous Mobile Systems: Are We Ready?

Prof. Antoine B. Rauzy

Norwegian University of Science and Technology Trondheim, Norway

- Challenges for Safety Analyses of Autonomous Mobile Systems
- Hard Scientific and Technical Constraints
- The S2ML+X Family of Languages
- Model Synchronization
- Wrap-Up

Specificities of Autonomous Mobile Systems

- Mechanical but software intensive
- Cyber-physical (connected)
- Multi-phase
- Operate in evolving environments
- Safety critical
- Embed sensors
- Operate in fleet

Challenges for Safety Assessment

- Which safety standards to apply?
- How to take into account embedded software?
- How to take into account the multiple modes of operations?
- How to take into account cyber threats?
- How to take into account unconstrained and evolving environments?
- How to take into account fleets of autonomous mobile systems?
- How to collect reliability data (feedback experience)?
- How to integrate safety analysis and performance assessment?
- How to ensure the consistence of safety models with other types of systems engineering models?

•

(R)evolution in Reliability Engineering

- Challenges for Safety Analyses of Autonomous Mobile Systems
- Hard Scientific and Technical Constraints
- The S2ML+X Family of Languages
- Model Synchronization
- Wrap-Up

Uncertainties in the Safety Assessment Process

NTNU Norwegian University of Science and Technology

Classes of Modeling Languages

 Combinatorial Formalisms Fault Trees Event Trees Reliability Block Diagrams Finite Degradation Structures 	 States Automata Markov chains Dynamic Fault Trees Stochastic Petri Nets 	 Process Algebras Agent-based models Process algebras Python/Java/C++
	Expressive power	•
States	States + transitions	Deformable systems
Complexity of assessments		
#P-hard but reasonable polynomial approximation	PSPACE-hard	Undecidable

Difficulty to design, to validate and to maintain models

- Challenges for Safety Analyses of Autonomous Mobile Systems
- Hard Scientific and Technical Constraints
- The S2ML+X Family of Languages
- Model Synchronization
- Wrap-Up

Characteristics of Behavioral Models

Behavior + Architecture = Model

- Any modeling language is the combination of a mathematical framework to describe the behavior and a structuring paradigm to organize the model.
- The choice of the suitable mathematical framework depends on which aspect of the system we want to study
- Structuring paradigms are to a very large extent independent of the chosen mathematical framework.

The S2ML+X Promise

S2ML (System Structure Modeling Language): a coherent and versatile set of **structuring constructs** for any behavioral modeling language.

- The structure of models reflects the structure of the system, even though to a limited extent.
- **Structuring** helps to design, to debug, to share, to maintain and to align heterogeneous models.

Reliability Data

Probabilistic risk and safety assessments require **probability distributions** to be associated with **events** that change the state of the system under study.

 F(t) = probability that the component is failed at time t
 F⁻¹(z) = (random) delay before the failure of the component

As of today, mostly parametric probability distributions (exponential, Weibull...)

From now on, more general calculation procedures:

- Empirical distributions
- Learned distributions (machine learning)

- A lot of data does not mean good data (rare events)
- Scenarios versus individual events

- Challenges for Safety Analyses of Autonomous Mobile Systems
- Hard Scientific and Technical Constraints
- The S2ML+X Family of Languages
- Model Synchronization
- Wrap-Up

Model Diversity

Models are designed by different teams in different languages at different levels of abstraction, for different purposes, making different approximations. They have also different maturities.

 $complexity \rightarrow simplexity$

- 1. The diversity of models is irreducible.
- 2. The systemic digital twin is a collection of heterogeneous models

Model Synchronization

Abstraction + Comparison = Synchronization

How to agree on disagreements?

- Challenges for Safety Analyses of Autonomous Mobile Systems
- Hard Scientific and Technical Constraints
- The S2ML+X Family of Languages
- Model Synchronization
- Wrap-Up

Wrap-Up & Conclusion

- "Traditional" modeling approaches in reliability engineering are **no longer sufficient**:
 - Because the **systems** we are dealing with are **more complex**.
 - Because new information technologies open new opportunities.
 - Because reliability models should be integrated with models from other engineering disciplines, i.e. as a part of the systemic digital twin.
- **Huge benefits** can be expected from a full-scale deployment of model-based systems engineering. However, this requires:
 - To set up solid scientific foundations for models engineering.
 - To bring to maturity some key technologies.
- The biggest challenge is to train new generation of engineers:
 - With skills and competences in **discrete mathematics** and **computer science**, and
 - With skills and competences in system thinking, and
 - With skills and competences in **specific application domains**.